
4. 27 C of charge are placed on a spherical conducting shell. A 11 C-point charge is placed at the center of the cavity. The net charge on the outer surface of the shell is:

97+11138

E) 0.96×10^{12}

- 5. A particle has a mass of 6.4 x 10⁻²⁷ kg and a charge +2e is released from rest in a uniform electric field of magnitude 8.0 x10⁴ N/C. The acceleration of the particle in m/s² is:
- $E = \frac{5}{9}$ $2 \times 16 \times 10^{-14} = 3.2.$ $5 = 9 \times 10^{14} \times 3.2 \times 10^{-14}$ $= 9 \times 10^{12}$ (A) 4.0 x 10¹² B) 0.48×10^{12} C) 3.86×10^{12} Eq = Na D) 1.6×10^{10}
 - F=ma => a=9E = 8×101× 6. A $5x10^{-8}$ C charge is fixed at the origin. A $-8x10^{-8}$ C charge is moved from x = 10 cm on the x axis to y = 20 cm on the y axis. The change in potential energy is:
 - $PU_{2}U_{5}-U_{1} \qquad U_{5}^{2}=\frac{kq.4}{R^{2}}-qx_{10}q.x.5x_{10}^{2}x_{2}-8x_{10}^{2}$ $U_{5}\frac{kq.4}{r}=\frac{qx_{10}q.x.5x_{10}-8x_{2}-8x_{10}r}{r} \qquad 0.1 \qquad 3600x_{10}-1$ $=-1.8x_{10}r^{2}-3.6x_{10}r^{2} \qquad 0.2 \qquad -3.6x_{10}r^{2}$ $=-1.8x_{10}r^{2}-3.6x_{10}r^{2} \qquad 0.2 \qquad 0.2 \qquad -3.6x_{10}r^{2}$ 3.9x10 A) 1.1×10^{-5} J B) $9.0 \times 10^{-5} \text{ J}$ (C) 1.8 x 10⁻⁴ J D) zero E) -1.1 x 10-4 J
 - ? 7. When the dipole moment of a dipole in a uniform electric field rotates to become more nearly aligned with the field: Pagd. V. V9
 - A) the field does no work
 - B) the field does positive work and the potential energy decreases
 - C) the field does negative work and the potential energy decreases
 - D) the field does negative work and the potential energy increases
 - E) the field does positive work and the potential energy increases

12. A charged oil drop with a mass of 2.0x10-4 kg is held suspended by a downward electric field of 500 N/C. The charge on the drop is: Em - 7 X154

	2	4 S		2002	011-
(A) -4.5x10-4 C	E, F. E	d. f 1 500	9		q
B) +2.5x10-4 C -4.0x10-6 C	1.	ing visas		5009:	Haxs
(C) -4.0x10 ⁻⁶ C	Ē	-4118	mas	- Fee	Com

D) +2x10-4 C E)_+4.0x10-6 C

13. A 25.0-μC point charge is placed at the center of a cube. The electric flux in N·m²/C through one side of the cube is:

13. A 25.0-µC point charge is placed at the through one side of the cube is:

A)
$$1.1 \times 10^5$$

B) 0

C) 5.6×10^5

D) 1.5×10^5

D) 1.5×10^5
 $6 \times 6 \times 10^5$

D) $6 \times 6 \times 10^5$
 6

14. A 5-cm radius conducting sphere has a charge density of 8x10-6 C/m² on its surface. Its electric potential, relative to the potential far away, is: V= 8x156 1, NC4112

15. The electric potential at points in an xyz space is given by: $V = 3x^2y - 3y^2z + 4xz^2$ V/m³. The electric field at the point p(1,0,2) is

A)
$$E = 0$$

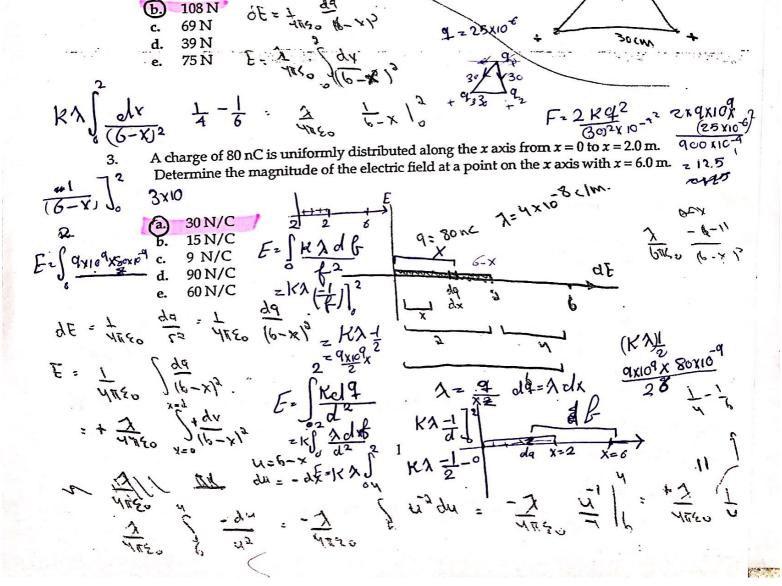
B) $E = -16i - 3j - 16k$ N/C

C) $E = -12i - 3j + 12k$ N/C

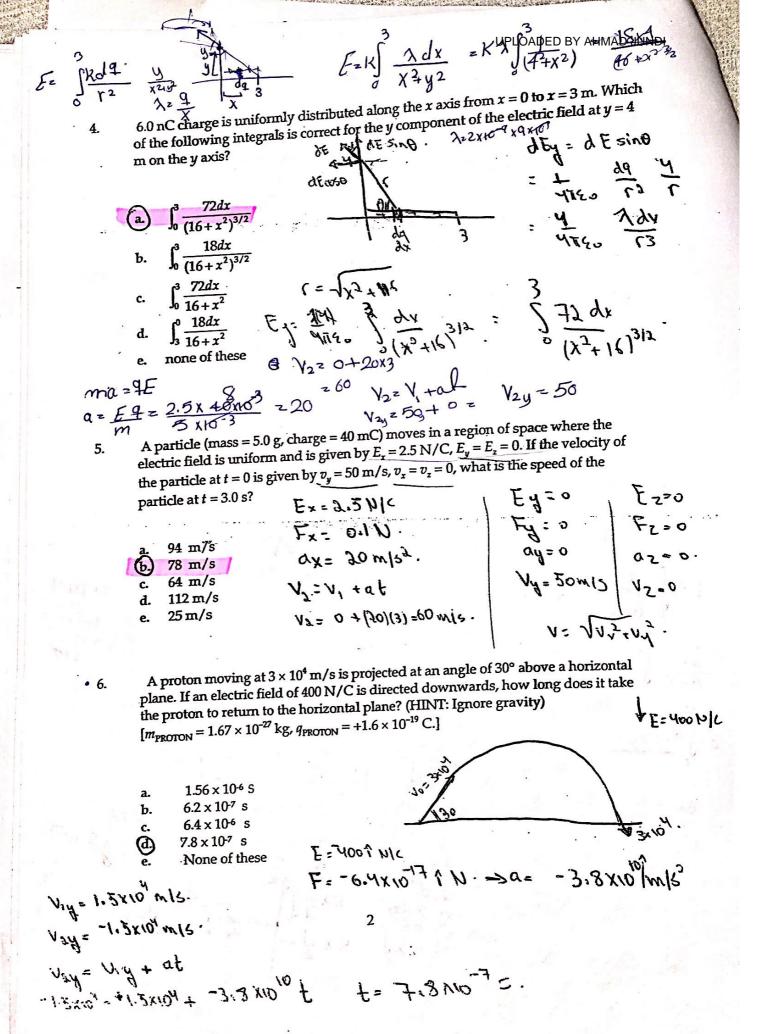
D) $E = -16i + 5j$ N/C

E) $E = -16i + 9j + 4k$ N/C

 $E = -16i + 9j + 4k$ N/C


$$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / \text{ N} \cdot \text{m}^2$$

 $k = 1/4\pi \xi = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$


156 N

- A particle (m = 50 g, $q = 5.0 \mu\text{C}$) is released from rest when it is 40 cm from a second 1. particle ($Q = -20 \mu C$). Determine the magnitude of the initial acceleration of the 50-g Ø Q = -30 × 10° € particle. '
 - m= 0.5kg $50 \,\mathrm{m/s^2}$ $28 \,\mathrm{m/s^2}$ Ъ. $72 \, \text{m/s}^2$ F = 4180 C3 = 056 N. (d) 112 m/s²/ None of these

ma=Eg Three point charges, two positive and one negative, each having a magnitude of 2.

 $25\mu C$ are placed at the vertices of an equilateral triangle (30 cm on a side). What is the magnitude of the electrostatic force on the negative charge?

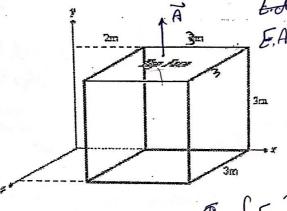
Charge of uniform surface density (4.0 nC/m²) is distributed on a spherical surface 7. (radius = 3.0 cm). What is the total electric flux through a concentric spherical

surface with a radius of 10.0 cm?

B=1'E.A $14.1 \,\mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}$ $20.3 \, \text{N} \cdot \text{m}^2/\text{C}$ $2.3 \,\mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}$ 5.1 N·m²/C/54712 40.6xA

 $E = \frac{1}{\sqrt{i} \zeta_0} \frac{Q}{f_0}$ 01 26 : 4 : B 2 1 1 1 = 6 . NU FO. OF = 3

φ= SE. 3A


9.1 N · m²/C Blz gene

E = 4x109 ATTGO 100X109

= JuodAcoso = 40/(411c3)

The electric field in the region of space shown is given by E = (8i + 2yj) N/C where y is in m. What is the magnitude of the electric flux through the top face of the cube shown?

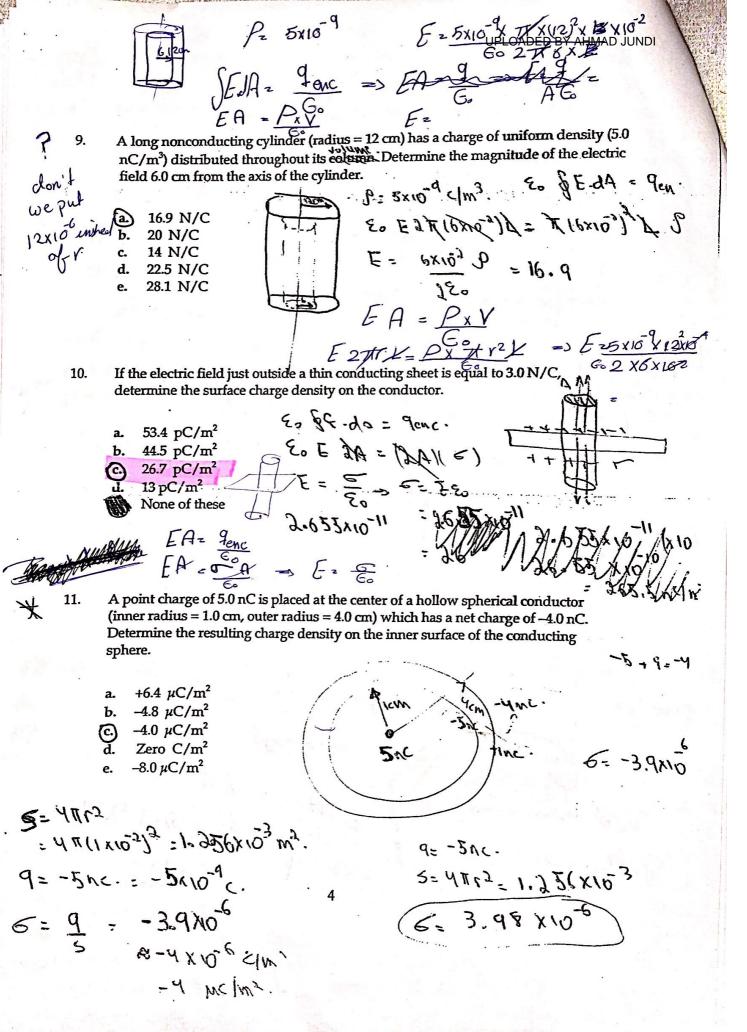
E2 5812 2 40.6

E= 81 + 4j. \$ = \$ = d=

De JE. An JSi+2yî

a. $72 \text{ N} \cdot \text{m}^2/\text{C}$ b. 60 N·m²/C (c)54 N·m²/C

(A) (3) (3) =


M

11

d. zero $N \cdot m^2/C$

e. None of these

(81+240). 1951 2×9×4

12. The electric potential at points in an xyz space is given by:

 $V = 3x^2 yz^3$ V/m³. The electric field at the point p(1,2,1) is

(a)
$$E = -12i - 3j - 18k$$
 N/C

b.
$$E = -96j$$
 N/C

c.
$$E=0$$

d.
$$E = -12i - 12j - 36k$$
 N/C

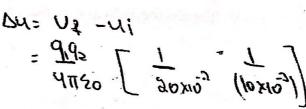
 $E = -3\lambda s_3(3x)[+ .3x_5] + .3s_3$

= (-3)(2)(1)(2)(1) +(-3)(1) (1) +(-3)(1)

13. The electric field in a certain region of space is given by:

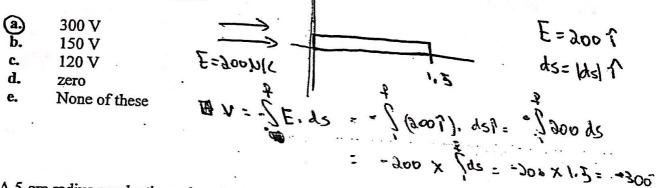
 $E = 4 \times i + 9 \text{ y}^2 \text{ j}$ N/C, given that the potential at the origin (0,0) is zero, the potential in this region is given by V=

a.
$$-2x^2 + y^3$$

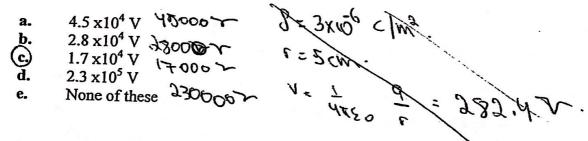

b.
$$-2x^2 + 2y^3$$

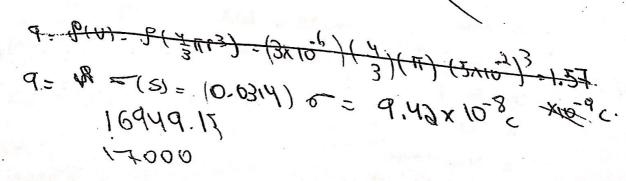
c.
$$2 + 12y$$

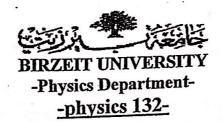
(d.)
$$-2x^2-3y^3$$


14. The work in joules required to carry a 9.0-C charge from a 15.0-V equipotential surface to a 6.0-V equipotential surface and then to a 25.0-V surface is:

15. A 5×10^8 C charge is fixed at the origin. A -4×10^8 C charge is moved from x = 10 cm on the x axis to y = 20 cm on the y axis. The change in potential energy is:






- a. -1.8 x10-4 J
- b. None of these
- c. 1.8 x10⁻⁴ J
- d. 9.0 x10⁻⁵ J
- e. zero
- 16. A 1.5-meter rod is parallel to a uniform 200 N/C electric field. The potential difference between its ends is:

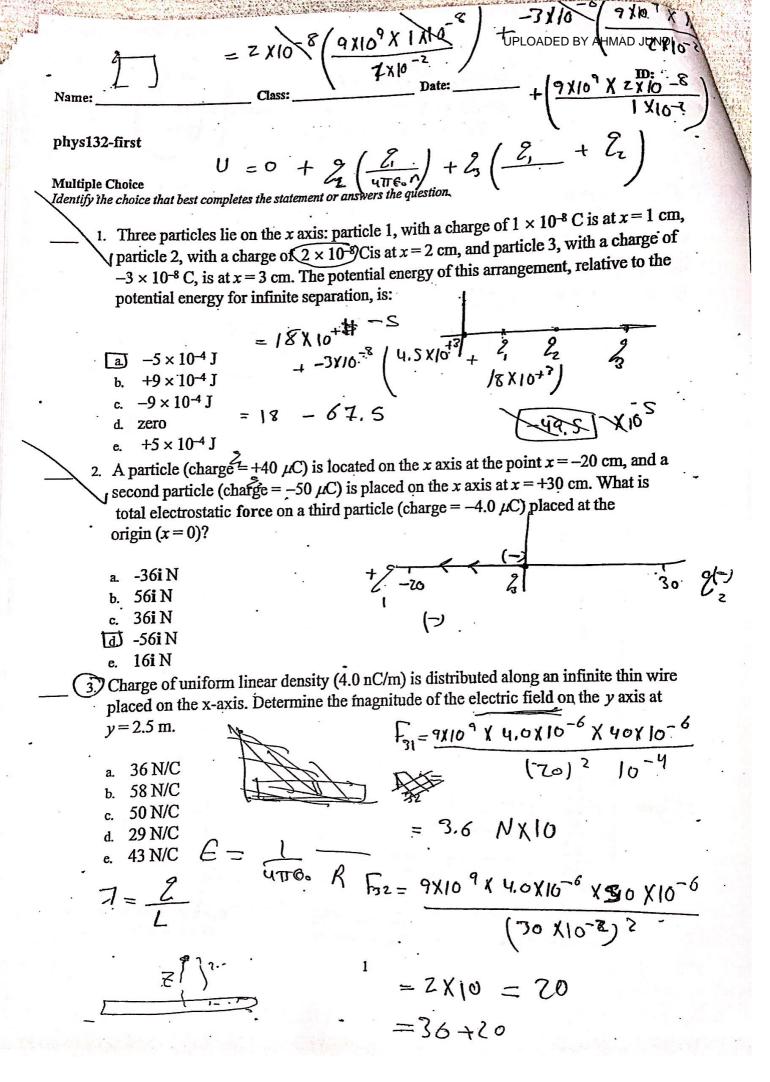


17. A 5-cm radius conducting sphere has a charge density of 3 x10⁻⁶ C/m2 on its surface.
 Its electric potential at its surface is:

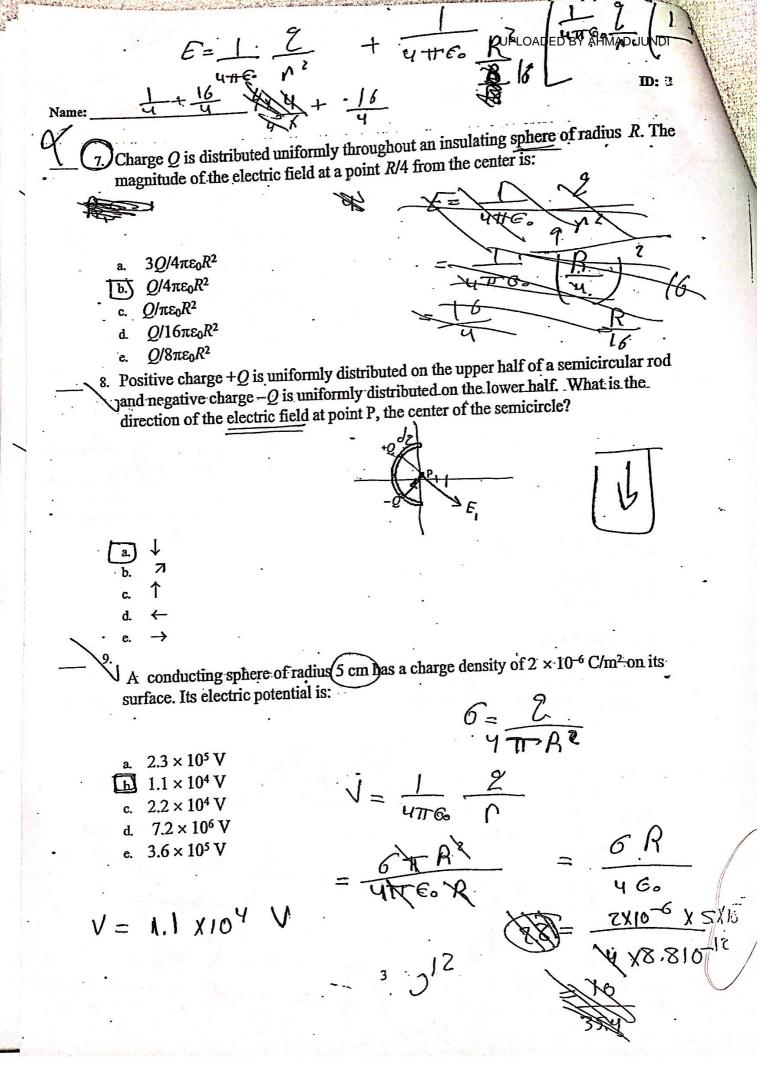
1st Hour Exam Time: 80 Minutes

<u>Summer Semester 2013-2014</u> 20/7/2014

			No.
	100	63 3512	
Student Name:		and the second	
Student Number:	1197282		*******
Student Mamber		and the property of the second	The second secon


ضع علامة (X) هنا	Instructor Name	Section No.
کلیع طرفه (X) ها	سابد ناسد	1L
Х	وفاء خاطر	.2L
	مسان عباس	3L
	عزيز شوابكة	4L

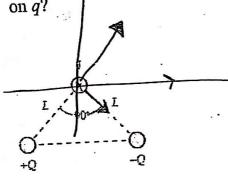
Answer Sheet


<u>Q#</u>	A	В	C .	D	E
· <u>1</u>	1				
<u>2</u>				L	
<u>3</u>					
4		1			
<u>5</u>			1		
<u>6</u>			<u></u>		
7					4 1 16.
<u>8</u>	1				
9		1	11	(1	
<u>10</u>					1
11	3				1/
12					1
<u>13</u>	0 1 1 1	1			
14			1		Za.
<u>15</u>		1		1	
<u>16</u>		-			1. 1

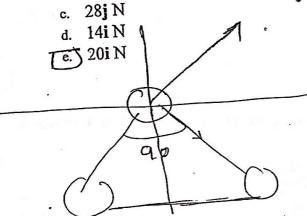
 $M_p = 1.67 \times 10^{-27} \text{kg}$

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{J}$

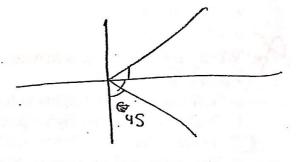
F= 2E	$Q = \frac{240}{7 \mu P LOADED BY AHMAD JUNDI}$
Name: $70 \times 10^3 \times 9 = 3.\times 10^3 \times 90$	20 EGADED BY ANIMAD SONDI
701034 = 3111300	1D: R
Name:	
1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	and of 20 m/s when it enters a region where
the electrical disease a constant magazitation	peed of 20 m/s when it enters a region where le of 80 N/C and a direction which is the
same as the velocity of the particle. Wha	t is the speed of the particle 3.0's after it
enters this region?	V= V +(6)
a. 41 m/s	V= ZO + 12X 3
₩ 56 m/s	V = 20 4 36
c. 80 m/s	V=56
d. 68 m/s . a e. 36 m/s	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	along the x axis from $x = 2$ m to $x = 6$ m.
Which of the following integrals is corre	ect for the magnitude (in N/C) of the electric
field at $x = +8$ m on the x axis?	
dF-1- (d	Z John X
a. ∫° 54dx 47 € 3) ∫	12
56 54dx = 7 X	11 2 6 118
a. $\int_{2}^{6} \frac{54dx}{x^{2}} \qquad \partial E = \frac{1}{4\pi \epsilon_{0}} \int \frac{\partial}{\partial x}$ $ \forall b \int_{2}^{6} \frac{54dx}{(8-x)^{2}} \qquad E = \frac{7}{4\pi \epsilon_{0}} \frac{X}{X^{2}}$	1-9 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X SALID
$\swarrow d. \int_{2}^{6} \frac{216dx}{(8-x)^{2}}$	
8 (
$4 \text{ e. } \int 54 dx / (8-x)^2$	
The electric field in a region of space i	is given by $E_x = (3.0x)$ N/C, $E_y = E_z = 0$, where
\sqrt{x} is in m. Points A and B are on the x	axis at $x_A = 3.0$ m and $x_B = 5.0$ m. Determine the
potential difference $V_{\rm B} - \tilde{V}_{\rm A}$.	C
	V _R - V _A = -) E ds
a18 V	E H 3
b. +24 V	→E
d. +30 V	= (-) E (050
e6.0 V	= 3.0 X d
- - 5	
(-)? X ⁷	- 5 \
$\frac{1}{2}$	5
- L C 73	$=-\frac{1}{3}$ X
(-) /10015 \ 11312	$)^2$ $\frac{3}{2}$
=3(10) -(13)	1 =1-32 (12.5 - 4.5)
1/2/ /2/	



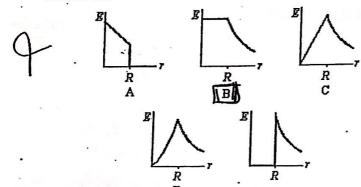
Name:	
11444	


A particle with a charge of 5×10^{-6} C and a mass of 20 g moves uniformly with a speed of 7 m/s in a circular orbit around a stationary particle with a charge of -5×10^{-6} C. The radius of the orbit is:

- $0.62 \, \mathrm{m}$
- 0
- 1.6 m
- 4.4 m đ.
- (e.) 0.23 m


11. If $Q = 25 \mu C$, $q = 10 \mu C$, and L = 40 cm in the figure, what is the electrostatic force on q?

- -22i N
- zero



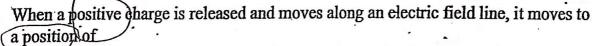
$$\frac{9}{(40\times10^{-2})^{4}} = \frac{25\times10\times10^{-6}\times10^{-6}}{(40\times10^{-2})^{4}}$$

	· · · · · · · · · · · · · · · · · · ·	
Name:		
T ANTHU.		

12. Which of the following graphs represents the magnitude of the electric field as a function of the distance from the center of a solid charged conducting sphere of radius R?

- a. E
- b. **C**
- c. D
- d. A
- e.) B

3. The dipole moment of a dipole in a 300N/C electric field is initially perpendicular to the field, but it rotates so it is in the same direction as the field. If the moment has a magnitude of 2×10^{-9} C·m the work done by the field is:



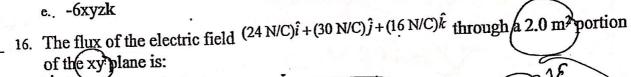
a
$$-12 \times 10^{-7} \text{ J}$$

(b.) $-6 \times 10^{-7} \text{ J}$

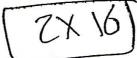
c.
$$6 \times 10^{-7} \, \text{J}$$

d.
$$12 \times 10^{-7} \text{ J}$$

e. 0

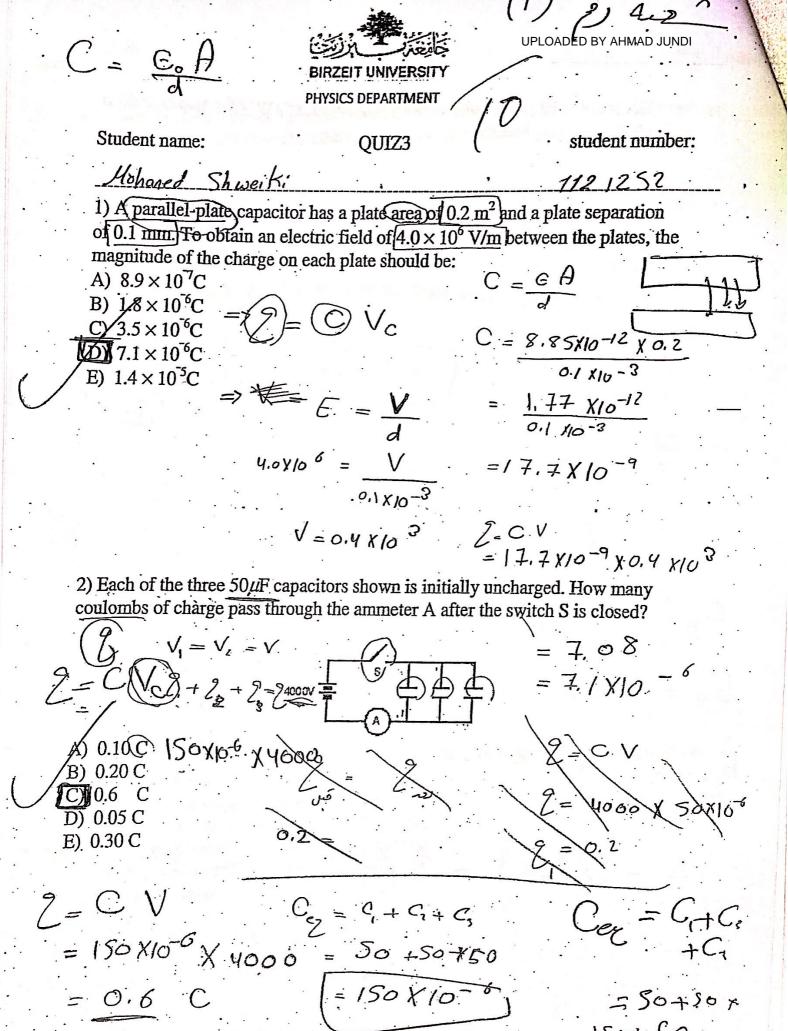


- a. lower potential and higher potential energy.
- ь. higher potential and higher potential energy.
- c. higher potential and lower potential energy.
 - d. lower potential and lower potential energy.
 - e. greater magnitude of the electric field.


Name:	

15.	The electric potential at any point	nt in space is given by	V=3xy	z,the	electric mein at
	any point in space is given by:				

- a. -6yi
- (b.) $-3y^2zi-6xyzj-3xy^2k$
- c. $3y^2zi+6xyzj+3xy^2k$
- d. -3xi-6yj-3zk
- e. -6xyzk



- 48 N·m²/C . a.
- 60 N · m²/C Ъ.
- 34 N · m²/C
- d 32 N·m²/C
 - 42 N·m²/C

$$\Lambda = 3X N_S S$$

-Physics Department-Physics 132

1st hour exam Time: 80:00 min 2nd Semester 2012/2013 Date:24/3/2013

Coordinator Ghassan Abbas

Student Name: Student NO: _ \\

ضع علامة (X)هنا	Instructor Name	Section No.	<u> </u>	10.00
X'	تيسير عاروري	1,2D	S	12:00
	غاده دوشق	3,4,5,6D		
	وفاء خاطر	7,9,10D		
	غسان عباس	8D		

Answer Sheet:

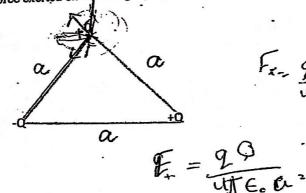
O#	A	В	C	D	E
Q# 1 2 3 4 5 6				X	
2	×				
3					X
4		X			!
5					×
6				×	<u> </u>
7		•	-		· ×
8					X
9			X		•
10		×			
11	×				ļ .
12				×	
13				<u> </u>	
14	X				
15		X			
16			×		
17			*	<u></u>	

 $e = 1.6 \times 10^{-19} C$

 $Me = 9.11 \times 10^{-31} kg$

 $\epsilon_{\rm o} = 8.85 \times 10^{-12} \ {\rm C}^2/{\rm N.m}^2$

 $\mu_0 = 4 \pi \times 10^{-7} \text{ T.m/A}$


Name:

phys13212013

Multiple Choice

Identify the choice that best completes the statement or answers the question.

Charges Q, -Q and q are placed at the vertices (روؤس) of an equilateral triangle (مثلث متساوي الإضلاع) of length 'a' the total force exerted on the charge q is:

a.
$$\frac{1}{4\pi\epsilon \cdot a^2} \frac{Qq}{a^2} (\hat{i} + \hat{j})$$

b.
$$\frac{1}{4\pi\epsilon^2}\frac{Qq}{a^2}(\hat{l})$$

c.
$$\frac{0.87}{4\pi\epsilon^2}\frac{Qq}{a^2}(\hat{J})$$

$$\underbrace{\widehat{\mathbf{d}}}_{4\pi\epsilon}, \frac{1}{a^2} \underbrace{\frac{Qq}{a^2}}_{(-\hat{l})}$$

$$\frac{4\pi\epsilon^{2}}{4\pi\epsilon^{2}} \frac{qq}{a^{2}} (-\hat{i})$$

A rod of length L has a uniform positive charge per unit length λ. The electric field at the origin, a distance d from one end equal to:

b.
$$\frac{\lambda}{4\pi\epsilon} \left[\frac{1}{d+L} - \frac{1}{d} \right]$$

c.
$$\frac{1}{4\pi\epsilon^2} \left[\ln (L+d) - \ln d \right]$$

d.
$$\frac{1}{4\pi\epsilon^2} \ln\left[\frac{d}{d+L}\right]$$

$$\frac{2}{2\pi\epsilon \cdot d}$$

$$E = \frac{1}{2\pi\epsilon_{o}d} d$$

			ical aid ID: A
		المارية	الم
Name:		115/14.5	المالية المالية
		to separated by 3mm	The maximum possible
√ 3.	A charge of 9 µC is to be split in	to two parts that ar then separated by 3mm ree between those two parts is:	
	magnitude of the electrostatic for	rce between those two parts is	10 01 C1 8/109
' \	a. 2×10 ⁴ N	- 9 10 x 8 x 10'	= (9-Q) Q /c/
	b. 8×10 ³ N	t= k × 10	8x10-6
	c. $2.4 \times 10^3 \text{ N}$	The two parts and the two parts is: $ \frac{1}{\sqrt{2}} = \frac{9 \times 10^{-10} \times 9 \times (0^{9})}{\sqrt{2} \times 10^{-11} \times 10^{-11}} $ The path around a proton of radius 5.29×10 ⁻¹¹ m.	$QQ - Q^2$
	d. 61N	path around a proton of radius 5.29×10 ⁻¹¹ m nergy of the circulating electron is:	in the state $\sqrt{6}$
4.0	(e) 0 e (4)	- ())	.The proton is at rest at the
	An electron moves in a circular	path around a proton series of the circulating electron is:	- 1/2
	Control are arrest	nergy of the circulating electron is: KiU t	t= n-
	a. 4.4×10 ⁻¹⁸ J	KiUt 12	A11 10-31. 12
	b. 2.18×10 ⁻¹⁸ J	9.109, 1.6x1.6 MG	11 ×10 × V
	c. 8.7×10 ⁻¹⁸ J d. 8.2×10 ⁻¹⁸ J	1579 vio:117	(SELVE
9	d. 8.2×10 ⁻¹⁸ J	(S.E. A.C.)	tric field the will balance the
(°	aloha particle has a mass of	$f 6.64 \times 10^{-27}$ kg and a charge of $+2e$. The election	the held the
	weight of the alpha particle is		_ **pai **)
(Felt	$\frac{1}{2}$ 2.1×10 ⁻⁷ N/C downward	EFE	=mq
X	b 2.1×10 ⁻⁷ N/C upward	E FEL	CANALOWA.
(b)	c. 4.2×10 ⁻⁷ N/C downward		
. P.	d. 4.2×10 ⁻⁷ N/C upward	tion 20	C De les la land it
1	e. 2.1×10 ⁻⁷ N/C in any direct	tion oole in a 300-N/C electric field is initially lirection as the field. If the moment has a	perpendicular to the field, but it
· <u>\\</u>	6. The dipole moment of a dipole		
ny	work done by the field is:	\cdot	- (-PE (-) +0
V	77	$\omega = -80$	= - 300 x2x10
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	a12 × 10 ⁻⁷ J	(- PE Ecso)	1- (-PEC=50.) +0
() \ 3\J	b6 × 10 ⁻⁷ J	ath.	
(A)	d. 6 × 10 ⁻⁷ J	\	
٥.	e. 12 × 10 ⁻⁷ J	. 50 2 notion	of the runlane is:
	7. The flux of the electric fie	eld 24î+12j+36k through a 5.0 m ² portion	or mers binne is:
		Ø=EXA \$	
	a. 48Nm ² /C b. 60Nm ² /C		X
	503 × 210	$\phi = E \cdot dA$	_/
	c. 72Nm ² /C d. 120Nm ² /C	9- 5=120V	m2/2
	(e.) 180Nm ² /C	= 30, 0 = (200	14
	3) = n 9/85/2		- (<u> </u>
,	3) 8 = 12 / 12 / 12		
	3		
		2	
		d.	
		ma	
		\mathcal{L}	

Name:	A point particle with charge q is placed inside a cube but not at its converge side of the cube:	enter. The electric flux through
	A rejet particle with charge q is placed inside a cube but not at	
8.	any one side of the cube:	
0	any one side of the odds a. is zero	
	b. is q/E	
	c. is $q/4\varepsilon_0$	
	d. is q/6ε ₀	Som tha
	cannot be computed using Gauss' law Charge is distributed uniformly on the surface of a large flat plate. The electric field 4 cm from the plate is:	The electric field 2 cm from the
9.	Charge is distributed uniformly on the surface of a large state.	
	plate is 30 N/C. The electric field 4 cm from the plate is:	
	a 120 N/C = = = = = = = = = = = = = = = = = = =	20
100	a 120 N/C b. 80 N/C CO 30 N/C CO 30 N/C	
Z ,	© 30N/C 260	*
x 22 3	d 15 N/C	2 43
R.	e. 7.5 N/C	of radius P. The magnitude of
10.	Charge Q is distributed uniformly throughout an insulating sphere	of fadius A. The magnitude of
	the electric field at a point RIZ from the center is:	(4.
	a. $Q/4\pi\epsilon_0 R^2$ $E=\frac{q}{2}$	= - V
1	b. OlneoR2	9 × 1400
	c. $3Q/4\pi\epsilon_0 R^2$ d. $Q/8\pi\epsilon_0 R^2$	- <i>y</i>
	a. $Q/4\pi\epsilon_0 R^2$ b. $Q/6\pi\epsilon_0 R^2$ c. $3Q/4\pi\epsilon_0 R^2$ d. $Q/8\pi\epsilon_0 R^2$ e. none of these	
11.		is placed at the center of the
1.5	cavity. The charge on the inner surface of the shell and the charge o	
	respectively, are:	
7 T	3 -q. Q+q1	31
·	b. 0,0	9)
	c. q, Q-q	
	d. $Q, 0$ e. $-q, 0$	
(12)		64. 1
	A conducting sphere with radius R is charged until the magnitude of surface is E. The electric potential at thecenter of sphere:	r the electric field just outside its
	Splicic.	
	a. zero	
	b. E/R $V = \frac{1}{1 + 1} \cdot C \cdot C \cdot C$	
	$\begin{array}{ccc} c. & E/R^2 & \bigcirc \mathcal{J} \\ \stackrel{\frown}{\text{(d)}} & ER & \end{array}$	
	e. ER^2	
		100
	¥ = ¥	
	(-2)	1 . P. 26.7 3
	1. 111. Es (K)	
	1 = CX /	
	Tichal	
	V. Censc B	

Physics Department phys 132

2nd Summer term 2012 Date: 21.07.2012

First Hour Exam Time: 75 minutes

Student #:

Student name: Ne Paylor

Answer Sheet

		. 1		1 5	E	7
Q. #	# A	В	C	D	1	K
1	100		X	}		12
2	X	<u> </u>		4	-	
3	10	X			-	100
4	X	1.				
5		X				
6				X		
7					X	
8.	X					
9			X			
10				2	X	
11	X					
12		(75)		X		X

Do NOT write below this line

For Instructor:	
Part I	9/12
Part II	e /11
Total Grade	18 /23

Best of Luck 100%

The electric potential in a certain region is given by $V = 7x - 3x^2y + 2yz$. The electric field UNDI ver this main in a certain region is given by $V = 7x - 3x^2y + 2yz$.

B) 0
C)
$$E = -(6xy - 7)\mathbf{i} - (3x^2 - 2z^2)\mathbf{j} - 4yz\mathbf{k}$$

D) $E = (6xy - 7)\mathbf{i} - (3x^2 - 2z^2)\mathbf{j} + 4yz\mathbf{k}$
E) $E = -(6xy - 7)\mathbf{i} - (3x^2 + 2z^2)\mathbf{j} - 4yz\mathbf{k}$

D) E =
$$(6xy - 7)i - (3x^2 - 2z^2)j + 4yz k$$

E) E =
$$-(6xy - 7)i - (3x^2 + 2z^2)j - 4yz k$$

$$=7x-3x^{2}y+2yz$$

$$\xi_{x} = (4-6xy) = cxy-7$$

$$\xi_{y} = -(-3x^{2}+2z^{2}) = 3x^{2}-2z^{2}$$

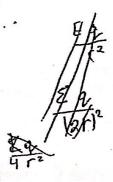
$$\xi_{z} = -(4yz) = -4yz$$

 \sim An electric dipole has a dipole moment of 2×10^{-9} C.m in the negative x-direction. A torque of 3.5×10^{-7} N.m in the positive z-direction is exerted on the dipole when it is in a uniform electric field. The magnitude and direction of the electric field is:

A)
$$5.7 \times 10^{-3}$$
 N/C, positive y-axis

$$\frac{1}{p} = \frac{1}{3.5 \times 10^{3}} = 175^{1}$$

6. Five positive charges are placed in a box. The first charge has a magnitude q. The second charge has a magnitude which is twice the first charge. The third charge has a magnitude which is twice the second charge. The fourth charge has a magnitude which is magnitude which is twice the third charge. The fifth charge has a magnitude which is twice the third charge. The fifth charge has a magnitude which is twice the charge q is: $\int_{-\infty}^{\infty} \frac{32q}{\epsilon_0}$ The net electric flux through the box is 6.8×10^7 N.m²/C. The magnitude of the charge q is:


B)
$$1.6 \times 10^{-19}$$
 C C) $47.2 \,\mu$ C D) $19.4 \,\mu$ C

$$9 = \frac{6.8 \times 10^7 \times 8.85 \times 1}{37}$$

Charge is distributed uniformly on the surface of a large flat plate. The electric field at 2 mm from the plate is 35 N/C. The electric field at 4 mm from the plate is:

1.3911

194x1

2

 $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$ $e = 1.6 \times 10^{-19} \text{ C}$

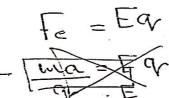
Part I: Multiple-Choice Problems. 1 Point Each

F=ma

a= ==

M

A "free" electron and a "free" proton are placed in an identical electric field. Which of the following is the CORRECT statement?


A) The magnitude of the electrostatic force acting on the proton is greater than that acting on the electron

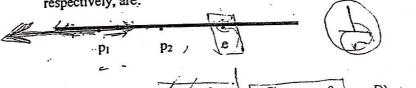
B) The direction of the electrostatic force acting on the proton is the same as that acting on the electron

The magnitude of the acceleration of the proton is less than that of the electron

D) The magnitude of the acceleration of the proton is greater than that of the electron

The magnitude of the acceleration of the proton is equal to that of the electron

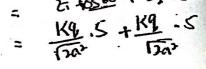
A positively charged glass rod attracts an object suspended by a nonconducting thread. This means that:

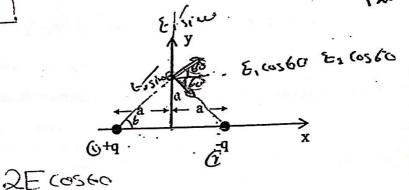

A) The object is definitely negatively charged

B) The object is possibly positively charged

The object is possibly negatively charged

D) The object is definitely positively charged


3. Two protons (p₁ and p₂) and an electron e lie on a straight line as shown. The directions of the electrostatic force from p₂ on p₁, the force from e on p₁ and the total force on p₁, respectively, are:

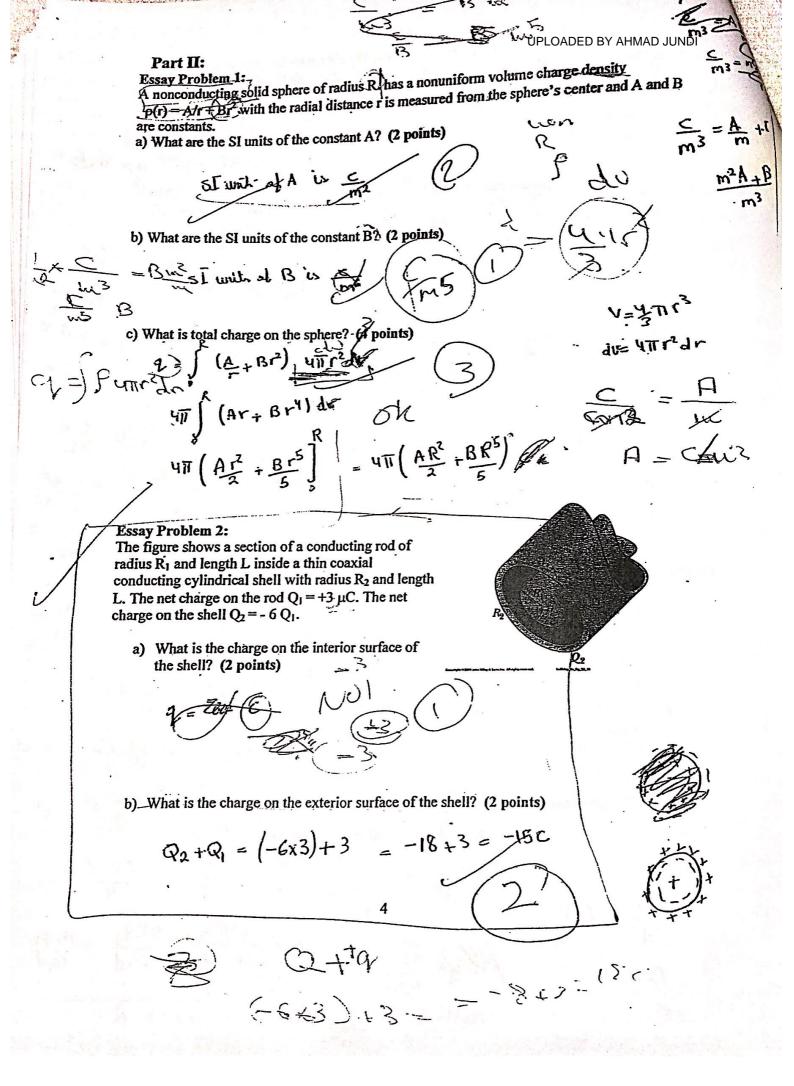


6) For the electric dipole shown in the figure, the electric field on the positive y-axis,

at y = a, is given by:

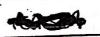


- E) zero



- 7) The magnitude of the force exerted by a 400 N/C electric field on a 0.2 µC point charge is:
- A) 0.08 N
- B) 8.0×10^{-3} N
- $(C)8.0 \times 10^{-5} \text{ N}$
 - D) 8.0 N
 - E) 2.0×10^{11} N
- F=E
 - .2x15×4∞
- 8) At the center of a uniformly charged ring choose the correct statement regarding the electric field E and the electric potential V
- A) E = 0 and V = 0
- B) $E \neq 0$ and $V = 0 \checkmark$
- C) $E \neq 0$ and $V \neq 0$
- D) E = 0 and $V \neq 0$ E) E = 0 only if the ring is conductor and $V \neq 0$
- 9) Two thin spherical shells, one of radius R and the other of radius 2R, surround an isolated point charge. The ratio (سبة) of the electric flux through the large sphere to the electric flux through the small one is:
 - A) 1/2
 - B) 1/4
 - C) 4
 - D) 2

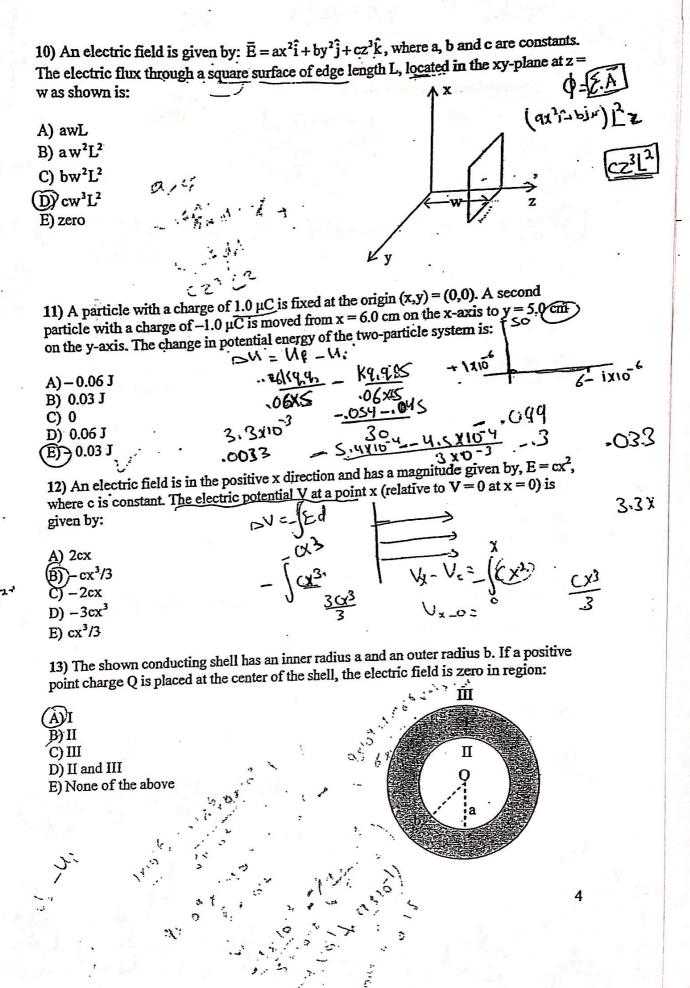
Physics 132

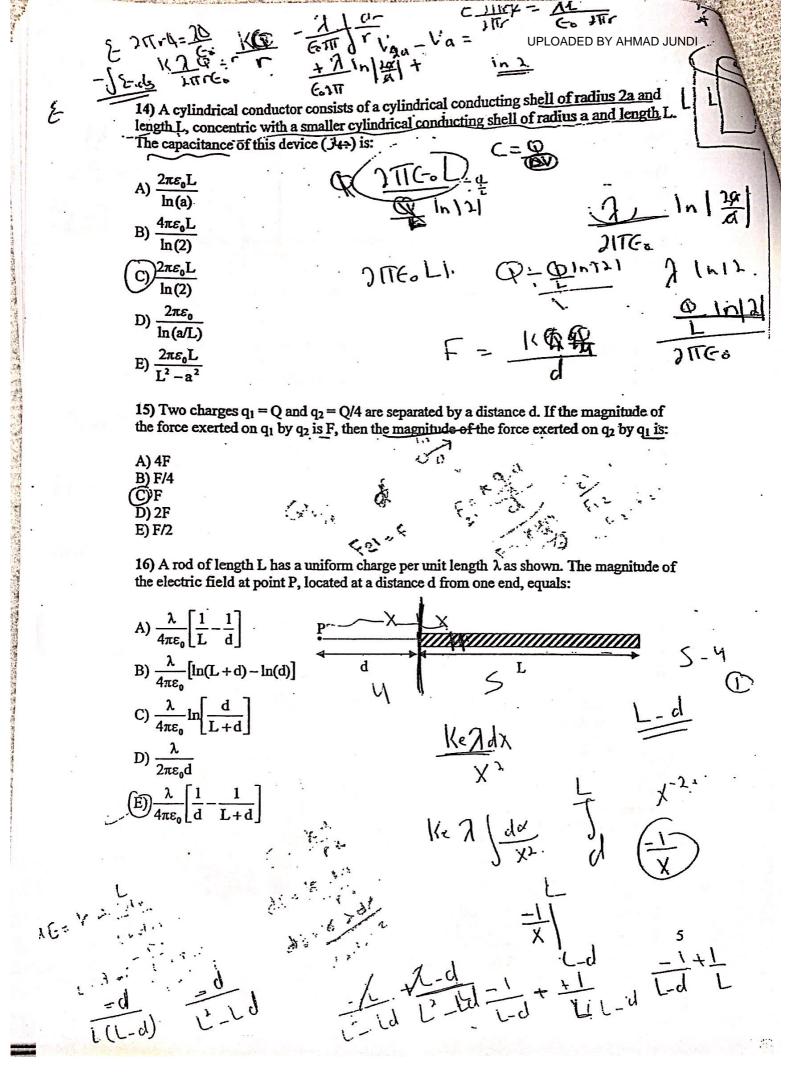

First Hour Exam
Time: 1.5 Hours

First Summer, 2010/2011 Date: 21/06/2011

Student Name:

Student NO.:




التبعة المائع (X) عملا حب	Instructor Name	Section No.
244 (12)	عجزان جوحة	1 (ENG334)
y	عدنان جوحة	2 (SCI234)
	نضال حويكات	3 (SCI214)

Answer Sheet

O No.	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u> .	E
A <u>1</u>	8				
2		/			
2 3 4 5 6 7 8 9 10 11 12 13		1.	٠		
4			/		
5			_		/
6	/				
7	•		/		
8					/
9					/
10				/	
11					/
12		/	Egila:		
13	/			0-1-	
14			/		
<u>15</u>		7 7 12	/		
<u>16</u>					/
<u>17</u>		/			
18	/	•		7	•

	1) Let Q'denote the charge on a capacitor, ΔV the potential must have the same and U the energy stored in it. Capacitors connected in parallel must have the same.
٠	and o the chergy start
	(A)Q B)U
	C) AV and U
	D) Q and U
	E) ΔV
	is in electrostatic equilibrium, which of the lollowing
	2) If a charged conductor is in electrostatic equilibrium, which of the following
	statements is always duc!
	A) The electric field just outside the conductor is perpendicular to the surface
	A) The electric field just outside the conductor is perpendicular to
	A) The electric field just outside the conductor is perpendicular to the conductor. B) The charge is distributed uniformly on the surface of the conductor is constant.
	(B) The charge is distributed uniformly on the surface of Laborator is constant. (C) The magnitude of the electric field just outside the conductor is constant.
	C) The magnitude of the electric field just outside the conductor is higher than the electric D) The electric potential at the surface of the conductor is higher than the electric
	E) The charge is distributed uniformly throughout the conductor volume X
	3) An air-filled parallel-plate capacitor has a capacitance of 1 pF. The plate separation is
	3) An air-filled parallel-plate capacitor has a capacitance of a parallel-plate capacitor has a capacitor has
	then doubled and a wax dielectric is inserted, completely mining and of the wax is:
	then doubled and a wax dielectric is inserted, completely initially plates. As a result, the capacitance remains 1 pF. The dielectric constant of the wax is:
	1/ G.A. K(E.A)/ (2 = 1/6)
	A) 0.25 $a = 1 < 1 < 10^{-1}$
	(B)2.0 Ind.
	C) 0.5 2 VI. 1X10 - 1 1/6 A - (K C. 17
	D) 4.0
	$E) 8.0 \qquad 2d$
	A A shares of 10 C is placed on a superior confidence and a point of the South
	is placed at the center of the shell. The net charge on the outer surface of the shell is:
	A)5C 9: -9:00 + 9:01 - 2 10 12 1 18
	A)5C
(120
	C)8C
	D) 10 C
	E) 0 C
	2,4 -
	5) A charged capacitor stores a charge of 0.1 C when connected to 40 V battery. The
	stored energy in the capacitor is:
	Was Control of the Co
	A) 400 J
	B)41
(0)0.21
Ι	Q(2.5)
É	\mathfrak{H}_{1}
ت	O_{2} O_{3} O_{4} O_{5}
	(VIO)
	J. J. E. DA
	(R)
	1 (O)
	1. QD 7x.1 -
	2 110 20
	$\int_{-3}^{\infty} \left[-\frac{1}{3} \right]$
).SNO]
	1.5.

17) At a certain distance from a point charge, the magnitude of the electric field is 500 V/m and the electric potential is - 1.5 kV. The point charge equals:

500 = -Ed 500 = + 500 d 500 = 3 = d<u>Α</u>) 2 μC (B))- 0.5 μC 500 = KG C) 4 µC $D)-2\mu C$ $E)-4 \mu C$

18) An electron is accelerated from rest through a potential difference ΔV. Its final V. = O kinetic energy is proportional to:

DK = DW $\frac{1.5 \times 10^3}{5 \times 10^3} = \frac{500 \times 4}{500}$ $\frac{3}{3} = \frac{1.5 \times 10^3}{3} = \frac{9 \times 10^9 \times 10^9}{3}$ A) VAV B) 1/AV C) $1/\sqrt{\Delta V}$ D). ΔV E) ΔV^2

Elementary charge: e=1.60×10⁻¹⁹ C

Electron mass: $m_e = 9.11 \times 10^{-31} \text{ kg}$

Proton mass: $m_p = 1.67 \times 10^{-27} \text{ kg}$

Permittivity constant: $\epsilon_0 = 8.85 \times 10^{-12}$ F/m

Permeability constant: $\mu_0 = 4\pi \times 10^{-7}$ H/m

A MAN AND THE MAN AND THE PARTY OF THE PARTY

Good Luck

Physics Department phys 132

2nd Summer term 2012 date: 21.07.2012

Student name:

First Hour Exam Time: 75 minutes

Answer Sheet

.Q.#	A	В	С	D	E
1				~	
2		~			
3	7.				
4				بن.	
5				(VOI)	1
6				١٠٠٠	
7					i.mm.
8		~			
9			-		
10			~		
11					1
12				-	

Do NOT write below this line

For Instructor

Part I	119
Part II	/12
Total Grade	/11
•	/23

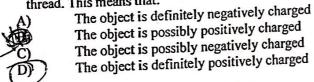
Best of Luck 100%

 $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$ $e = 1.6 \times 10^{-19} \text{ C}$

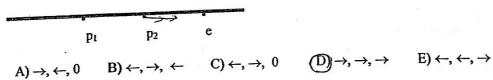
Part I: Multiple-Choice Problems. 1 Point Each

A "free" electron and a "free" proton are placed in an identical electric field. Which 1. of the following is the **INCORRECT** statement?

A) The magnitude of the electrostatic force acting on the proton is equal to that acting on

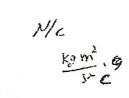

B) The direction of the electrostatic force acting on the proton is opposite to that acting the electron

C) The magnitude of the acceleration of the proton is less than that of the electron


The magnitude of the acceleration of the proton is equal to that of the electron

E) The charge of the proton is equal to the charge of the electron but differs in sign

A negatively charged glass rod/attracts an object suspended by a nonconducting thread. This means that:


Two protons $(p_1 \text{ and } p_2)$ and an electron e lie on a straight line as shown. The directions of the electrostatic force from p₁ on p₂, the force from e on p₂ and the total force on p2, respectively, are:

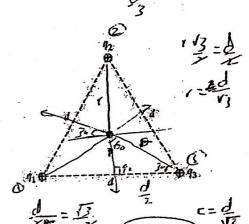
4. Charge is distributed uniformly on the surface of a large flat plate. The electric field at 2 mm from the plate is 37 N/C. The electric field at 4 mm from the plate is: E) 35 V/m D) 37 V/m

V=1

B) 33 V/m C) 8.25 N/C A) 16.5 N/C

An electric dipole has a dipole moment of 2×10^{-9} C.m in the negative x-direction. A of 3.5×10^{-7} N m in the persition torque of 3.5×10^{-7} . N.m in the negative z-direction is exerted on the dipole when it is in a uniform electric field. The magnitude and direction of the electric field is:

- A) 5.7×10^{-3} N/C, positive y-axis
- B) 175 N/C, negative x-axis
- C) 175 N/C, negative z-axis
- 175 N/C, negative y-axis


E) 175 N/C, positive y-axis

Three equal positive charges of magnitude q each are placed on the corners of an equilateral triangle of sides d as shown in the figure. Answer the following three questions:

The magnitude of the electric field at the center (the point p) of the triangle is:

 $3 q/(4\pi\epsilon_0 d^2)$

- B) $3 q^2/(4\pi\epsilon_0 d)$
- C) $3\sqrt{3} q/(4\pi\epsilon_0 d^2)$
- \mathfrak{O}_{0}
- E) $3\sqrt{3} q/(4\pi\epsilon_0 d)$
- 7 K9 5.130

The magnitude of the electric potential at the center (the point p) of the triangle is: 7.

- A) 3 $q/(4\pi\epsilon_0 d^2)$
- . C) $3\sqrt{3} q/(4\pi\epsilon_0 d^2)$
- D) $3 q^2/(4\pi\epsilon_0 d)$
- $(E)3\sqrt{3} q/(4\pi\epsilon_0 d)$

The electric potential energy stored in the system of the three charges is: 8.

- A) 3 $q/(4\pi\epsilon_0 d^2)$
- B) $3 q^2/(4\pi\epsilon_0 d)$
 - C) $3\sqrt{3} q/(4\pi\epsilon_0 d^2)$
 - D) 0
 - E) $3\sqrt{3} q/(4\pi\epsilon_0 d)$

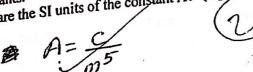
E) 19.4 μC

D) 47.2 μC.

- 9. Five positive charges are placed in a box. The first charge has a magnitude q. The second charge has a magnitude which is twice the first charge. The third charge has a magnitude which is twice the second charge. The fourth charge has a magnitude which is twice the third charge. The fifth charge has a magnitude which is twice the fourth charge. The net electric flux through the box is 5.8×10^7 N.m²/C. The magnitude of the charge q is:
 - B) 1.6×10^{-19} C (C) $16.6 \,\mu$ C A) $425 \mu C$ SE.J.A = Perc $5.8 \times 10^{7} = \frac{1}{5}$
 - 10. The electric potential in a certain region is given by $V = 8x 3x^2y + 2yz^2$. The electric field over this region is given by:
 - B) $\mathbf{E} = -(6xy 8)\mathbf{i} (3x^2 2z^2)\mathbf{j} 4yz \mathbf{k}$ C) $\mathbf{E} = (6xy 8)\mathbf{i} + (3x^2 2z^2)\mathbf{j} 4yz \mathbf{k}$ D) $\mathbf{E} = -(6xy 8)\mathbf{i} (3x^2 + 2z^2)\mathbf{j} 4yz \mathbf{k}$ E) $\mathbf{E} = (6xy 8)\mathbf{i} (3x^2 2z^2)\mathbf{j} + 4yz \mathbf{k}$
 - vy === (3x 2 2 22) 5 12= 80 (10-1/2) x
 - 11. A parallel-plate capacitor having air between its plates is charged to 48.5 V. The capacitor is then isolated from the charging source and the space between the plates filled with Plexiglas ($\kappa = 3.12$). The new potential difference across the capacitor is: D) 14.5 V (E) 15.5 V C) 95 V B) 12.3 V A) 48.5 V

$$q = CV$$

$$C_1V_1 = C_2V_2$$


$$\frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} = V_1$$
12. The energy stored in a 12- μ F capacitor is 150 μ J. The charge on the capacitor is:

A) 65 μC B) 56 μC C) 312 μC D) 60 μC

A nonconducting solid sphere of radius R. has a nonuniform volume charge density $\frac{p(r) = Ar^2 + B/r}{r^2}$ with the radial distance r is measured from the sphere's center and A and B

The State of the same

a) What are the SI units of the constant A? (2 points)

b) What are the SI units of the constant B? (2 points)

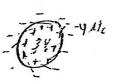
c) What is total charge on the sphere? (3 points)

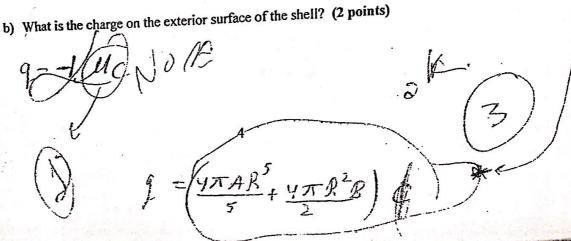
total charge on the sphere? (3 points)
$$q = \int P dV = \int (Ar + B) dV \longrightarrow \partial V = 4\pi r dr$$

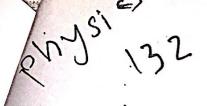
$$= \int (Ar + B) (4\pi r^2 dr) = A (4\pi r^2 dr + 4\pi r^2 dr + 5\pi r^2 B)$$

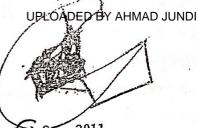
$$q = \left(4\pi A r^2 + B\right) \left(4\pi r^2 dr\right) = A \left(4\pi r^2 dr\right) = A \left(4\pi r^2 dr\right)$$

$$q = \left(4\pi A r^2 + B\right) \left(4\pi r^2 dr\right) = A \left(4\pi r^2 dr\right)$$


Essay Problem 2:


The figure shows a section of a conducting rod of radius R1 and length L inside a thin coaxial conducting cylindrical shell with radius R2 and length L. The net charge on the rod $Q_1 = +3 \mu C$. The net charge on the shell $Q_2 = -4 Q_1$.


a) What is the charge on the interior surface of the shell? (2 points)



TIME: 80 min

Physics 132

Coordinator: Tayseer AROURI

Sem. 2011 nd, Sem. 27/2/2011

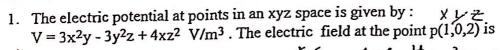
Student No.:

Student Name:

ضع إشارة (X) في كل من المربع المقابل لمدرس شعبتك ودانرة على رقم الشعبة.

	الثبعة		المدرس		الشعبة	المدرس		ĺ
		10	يعقوب عنين	П	1, 6	تيسير عاروري		l
\vdash	7	.9	راند حسن		3	.غسان عباس		ı
\vdash		,5	عنان حوده	౼	··· 2, §	وفاء خاطر	本	

لا تُفتح ورقة الامتحان حتى يسمح الى بذلك.


اكتب اسمك ورقمك في إعلى هذه الصفحة

اخْتَرَ الجوابُ الأَكْثَرُ قُرْبًا للجواب الصحيح وانقله على هذه الصقحة، وذلك تو إشارة (X) في الحانة المناسبة

السوال الذي له اكثر من إجابة يعطى علامة صفر.

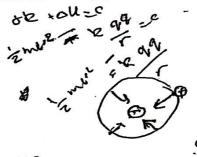
5) يجب إعادة أوراق الامتحان كاملة

		'n	0.	. Y .		en rige	~-à	1			j	j	٩.	1	J	1	/	K
İ		1	2	3	4	5	6:	7	8	9	10	11	12	13	14	15	16	17
	Α		2.60		7		1	1	4	1		, s.	- 3					
	В	×									4					4		-
	C		X		X	. V .	X	X	:				y	4	4			4
	D	737	H. #7	X		X	.7					1	4			517.55		
	E	• •••			4.5	: '		1	1.0			19.00					4	

- A) E = -16i + 12j + 3kN/C
- B) None of these
- N/C C) E = -12i - 3j + 12k
- D) E = 0
- $E)^{1}E = -16i 3j 16k$

N/C

En= 6xg+ #xz2 = 162 Eg 2 3 02 + 6452 = 30 Ez = - 36 + 8 x Z = 16 E


v-Kg= = 91/39 1/2 A 5-cm radius conducting sphere has a charge density of 6 x10-6 C/m² on its surface. Its electric potential at its surface, is:

- A) 5.1 x10⁴ V
- B) 2.3 x 10⁴ V
- C) None of these
- 3.4 x10⁴ V
- E) 7.3 x 105 V

U= $\frac{6}{50}$: $\frac{6 \times 10^{-6}}{9 \times 10^{-12}}$

V= 12 m/s in a circular orbit around a stationary particle with a charge of -48x10-6 C. The

- radius of the orbit is:
- A) 0.25 m
- B) 3.00 m
- C) None of these
- (D) 0.75 m
- E) 0.38 m

An alpha particle has a mass of 6.64×10^{-27} kg and a charge +2e is released from rest in a uniform electric field of magnitude 5.00x10⁴ N/C. The acceleration of the particle in m/s2 is:

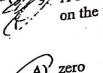
- A) 1.45 x 10¹²
- B) None of these
- C) 0.48×10^{12}
- D) 3.86×10^{12}

E) /2.41 x 1012

An 15.0-μC point charge is placed at the center of a cube. The electric flux in N·m²/C through one side of the cube is: A) None of these C) 4.7×10^5 D) 2.8 x105 E) 1.5×10^5 A long straight wire has a linear charge density of 2.8x10-9 C/m. The electric field 3cm from the wire is: E = b] day A) 2.52 x103 N/C B) 1.26 x103 N/C None of these D) 1.68 x103 N/C E) 3.36 x10-8 N/C Two small charged objects repel each other with a force F when separated by a distance d. If the charge on each object is reduced to one-fifth of its original value and the distance between them is reduced to d/3, the force becomes: A) 9F/16 B) None of these 9F/25 F/8 9F/4 A charged oil drop with a mass of 6.0x10⁻³ kg is held suspended by an downward electric field of 300 N/C. The charge on the drop is:

-7 F= (2 x10-4 C)

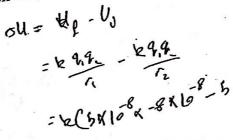
B) none of these


C) $+2.5 \times 10^{-4}$ C

D) (2x10-4C)

E) $+1.5 \times 10^{-4}$ C

A 5 x 10-8 C charge is fixed at the origin. A -8 x 10-8 C charge is moved from x = 10 cm

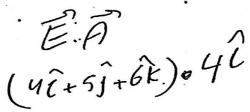

on the x axis to y = 20 cm on the y axis. The change in potential energy is:

A) zero B) 9.0 ×10-5 J

C) 1.8×10^{-4} J

D) None of these E) -1.8 x10-4 J

10. The flux of the electric field $(4\hat{\imath} + 5\mathbf{j} + 6\mathbf{k})$ N/C through a 4.0 m² portion of the yz plane


A) 60 N·m²/C

16 N·m²/C

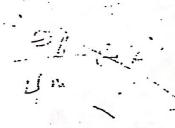
Ć) 24 N·m²/C

D) None of these

E) 20 N·m²/C

Two point charges $q_1 = 27x10^{-9}$ C is located at (0,0) m, and $q_2 = -250x10^{-9}$ C is located at (4,0) m. The electric field at point P(0,3)m is:

A) 27i N/C

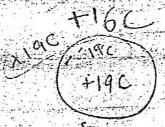

B) 108i - 54i N/C () 12i 27j N/C

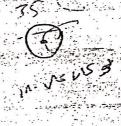
D) None of these

É) 36i 'N/C

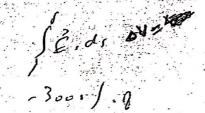
Ez & 91 = 270 E. - 4 - - 90 Com

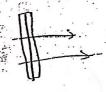
12. Negative charge Q is uniformly distributed on a semicircular rod. What is the magnitude and direction of the electric field at point P, the center of the semicircle?




= 29 sino/20

- A) $Q/8\pi^2\epsilon_0R^2$ \rightarrow B) $Q/4\epsilon_0R^2$ \downarrow C) $Q/16\pi\epsilon_0R^2$ \leftarrow
- = 12 (1-0)
- 16 C of charge are placed on a spherical conducting shell. A 19 C-point charge is placed at the center of the cavity (حويت). The net charge in coulombs on the outer surface of the shell is:
- A) +25 C B) +7 C C) +35 C D) +16 C


D) Q/2π²ε₀R² E) Q/2π²ε₀R²


D) +16 C E) 0 C

- 14. A 0.8-meter rope is parallel to a uniform 300 N/C electric field. The potential difference between its ends is:
 - A) 320 V
 - B) 160 V
- C) 240 V
- D) 0
- E) None of these

(15)	The electric field in a certain region of space is given by:
100	The state of the s
V	this region is given by $V = \begin{cases} -2x^2 + 2y^3 \\ -2x^2 + y^3 \\ -2x^2 - 3y^3 \end{cases}$ None of these $2 + 12y$
A)	$-2x^2+2y^3$
(B)	$-2x^{2} + 2y^{3}$ $-2x^{2} + y^{3}$ $-2x^{2} - 3y^{3}$
	-2x2-3y3
	None of these 2+12y
E)	2 129
7	
Da Sant	The work in joules required to carry a 9.0-C charge from a 15.0-V equipotential surface to a 6.0-V equipotential surface and then to a 20.0-V surface is: 45 J None of these 27 J 28 Sero 45 J Anh Anh Anh Anh Anh Anh Anh An
y	2 92/ 6
A)	45 J W 946 849 W = - DV =
В) С)	None of these $= -(15-10) = 5$ 27 J
-:	zero (AKE)
(E)	45 1
- (17)	Charge Q is distributed uniformly throughout an insulating sphere of radius R. The magnitude of the electric field at a point R/6 from the center is:
	e "Q
	$2/32\pi\epsilon_0 R^2$
	one of these
	$\Omega/4\pi\epsilon_0 R^2$
/ -/	0/16πε ₀ R ²
	(2 9)
1	(2) (1) (1) (2) (1) -9en
PE	DE CORT - G
(4 TR3 (+12) DEICH = 9en ENTR3
	47783 (1) SEICH = 9en E45112 = P45113
E.	nside = - 418.063
	TIVE CUIKUKI